2590

C₆H₈N₄²⁺.2Cl⁻

2	
Nonius CAD-4 diffractom-	440 observed reflections
eter	$[I > 2\sigma(I)]$
$\theta/2\theta$ scans	$R_{int} = 0.053$
Absorption correction:	$\theta_{max} = 69.80^{\circ}$
by integration from crystal	$h = 0 \rightarrow 11$
shape	$k = 0 \rightarrow 12$
$T_{min} = 0.24$, $T_{max} = 0.61$	$l = -5 \rightarrow 5$
1502 measured reflections	6 standard reflections
467 independent reflections	frequency: 30 min
<i>Refinement</i>	intensity decay: 0.7%
$R[F^2 > 2\sigma(F^2)] = 0.043$	$\Delta \rho_{\text{max}} = 0.49 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.60 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.109$	Extinction correction:

$wR(F^2) = 0.109$	Extinction correction:
S = 1.12	SHELXL93 (Sheldrick,
467 reflections	1993)
39 parameters	Extinction coefficient:
All H-atom parameters	0.0043 (18)
refined	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.0845P)^2]$	from International Tables
where $P = (F_o^2 + 2F_c^2)/3$	for Crystallography (1992,
$(\Delta/\sigma)_{\rm max} = -0.03$	Vol. C, Tables 4.2.6.8 and
	6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	z	U_{eq}
0.23662 (7)	0	0.50616(13)	0.0467 (4)
0.4255 (2)	-0.1499 (2)	0.1468(3)	0.0397 (5)
0.373 (3)	-0.124(2)	0.253 (5)	0.045 (6)
1/2	-0.0719 (2)	0	0.0339 (6)
0.4536(3)	-0.2799 (2)	0.0916(5)	0.0508 (6)
0.415 (3)	-0.351 (4)	0.182 (5)	0.068 (9)
	x 0.23662 (7) 0.4255 (2) 0.373 (3) 1/2 0.4536 (3) 0.415 (3)	$\begin{array}{cccc} x & y \\ 0.23662 (7) & 0 \\ 0.4255 (2) & -0.1499 (2) \\ 0.373 (3) & -0.124 (2) \\ 1/2 & -0.0719 (2) \\ 0.4536 (3) & -0.2799 (2) \\ 0.415 (3) & -0.351 (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 2. Selected geometric parameters (Å, °)

N1-C2	1.328 (2)	C2C2'	1.442 (5)
N1-C3	1.366 (3)	C3—C3"	1.338 (5)
N1H1	0.81 (3)	C3—H3	0.94 (4)
C2-N1-C3	108.9 (2)	NI-C2-C2'	126.1 (1)
C2-N1-H1	125 (2)	C3"—C3—N1	107.2 (1)
C3	126 (2)	С3"—С3—Н3	131 (2)
N1"—C2—N1	107.8(2)	N1-C3-H3	122 (2)
Symmetry codes:	(i) $1 - x, -y, -y$	z; (ii) $1 - x, y, -z$.	

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: NRC Crystallographic Computer Programs (Ahmed, Hall, Pippy & Huber, 1973). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976; Gabe, Le Page, Charland, Lee & White, 1989). Software used to prepare material for publication: SHELXL93.

The financial supports of the Natural Sciences and Engineering Research Council of Canada and the Fonds FCAR du Ministère de l'Éducation du Québec are gratefully acknowledged. Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1258). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Ahmed, F. R., Hall, S. R., Pippy, M. E. & Huber, C. P. (1973). J. Appl. Cryst. 6, 309–346. Accession Nos. 133–147.
- Cromer, D. T., Ryan, R. R. & Storm, C. B. (1987). Acta Cryst. C43, 1435–1437.
- Cromer, D. T. & Storm C. B. (1990a). Acta Cryst. C46, 1959-1960.
- Cromer, D. T. & Storm C. B. (1990b). Acta Cryst. C46, 1957-1958.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 2590-2594

1,2-[3,4-Dihydro-2-(4-methoxyphenyl)-2*H*pyrrolo][60]fullerene Carbon Disulfide

Matthias Ramm,^a Peter Luger,^a Johannes Averdung^b and Jochen Mattay^b

^aFreie Universität Berlin, Institut für Kristallographie, Takustr. 6, D-14195 Berlin, Germany, and ^bUniversität Kiel, Institut für Organische Chemie, Olshausenstr. 40, D-24118 Kiel, Germany. E-mail: ramm@chemie.fu-berlin.de

(Received 29 April 1996; accepted 19 July 1996)

Abstract

The title fullerene, $C_{69}H_9NO.CS_2$, is a low-symmetry derivative of C_{60} and does not show the known disorder of the unsubstituted fullerene molecule. Contrary to spectroscopic investigations, the C_s symmetry of the molecule is no longer present in the crystal. The two bridging atoms, C1 and C2, 'stand out' of the C_{60} surface.

Comment

Disorder plays a crucial role when investigating solid structures of fullerenes, and a number of static and

dynamic disorder models have been discussed (Chow, Jiang, Reiter, Wochner, Moss, Axe, Hanson, McMullan, Meng & Chu, 1992; Bürgi, Restori & Schwarzenbach, 1993; Bensch, Werner, Bartl & Schlögel, 1994; Boeyens, Ramm, Zobel & Luger, 1996). Two ways seem to be possible to suppress the adverse influence of the molecular dynamics in the solid state. The first is to crystallize host-guest complexes (Roth & Adelmann, 1993; Fedurco, Olmstead & Fawcett, 1995). The second involves the use of low-symmetry derivatives either as substituted compounds (Osterodt, Nieger & Vögtle, 1994; Irngartinger, Köhler, Huber-Patz & Krätschmer, 1994) or metal-organic compounds (Balch, Catalano, Lee & Olmstead, 1992). Functionalization by cycloaddition reactions represents a useful strategy to modify fullerenes (Hirsch, 1995) and to obtain molecules with lower symmetry. 1,2-(3,4-dihydro-2H-pyrrolo)[60]fullerenes can be obtained by photocycloaddition (Averdung & Mattay, 1996). Extensive spectroscopic investigations of these compounds [¹H NMR, ¹³C NMR, UV-visible, LDTOF MS (laser desorption time of flight mass spectroscopy)] showed that the data were only compatible with a spatial substituent position, thus satisfying overall molecular C_s symmetry. In the crystal of the title derivative (I), however, this symmetry is no longer present. While the pyrroline ring lies in the mirror plane of the C₆₀ molecule, it encloses an angle of about $33.8(2)^{\circ}$ with the phenyl ring plane (Fig. 1).

The increased bond length between the two bridged C atoms, C1 and C2, of 1.597 (4) Å, is in good agreement with comparable bond lengths found for methanofullerenes [1.574(3)-1.614(7) Å (Anderson, Boudon, Diederich, Gisselbrecht, Gross & Seiler, 1994; Osterodt, Nieger & Vögtle, 1994; Paulus & Bingel, 1995), a Diels-Alder adduct [1.62 (4); Rubin, Khan, Freedberg & Yeretzian, 1993] and a [3+2] cycloaddition adduct [1.584 (5) Å; Irngartinger, Köhler, Huber-Patz & Krätschmer, 1994]. The two sp^3 — sp^2 bonds involving C1 and C2 are slightly elongated. The 5-6 and 6—6 bond lengths in the C_{60} sphere range from 1.389 (5) (C14-C22) to 1.497 (5) Å (C51-C53) and from 1.320(5) (C43-C55) to 1.422(5) Å (C40-C41), respectively. The average values of 1.446(5)and 1.378(5)Å, respectively, correspond to those of 1.458 (6) and 1.40 (1) Å determined by electron diffraction (Hedberg, Hedberg, Bethune, Brown, Dorn, Johnson & de Vries, 1991). The distances of the C atoms, except C1 and C2, from the centre of the molecule vary between 3.492 (3) (C16) and 3.557 (3) Å (C57),

Fig. 1. ORTEP (Johnson, 1971) drawing of the asymmetric unit showing the crystallographic numbering scheme (50% probability displacement ellipsoids).

C₆₉H₉NO.CS₂

Fig. 2. SCHAKAL92 (Keller, 1992) drawing of the arrangement of the molecules in the unit cell.

with an average value of 3.522(3) Å. The distances of C1 [3.837(3) Å] and C2 [3.820(3) Å] are considerably longer. Hence, as in other derivatives of fullerene (Anderson, Boudon, Diederich, Gisselbrecht, Gross & Seiler, 1994; Irngartinger, Köhler, Huber-Patz & Krätschmer, 1994), C1 and C2 stand out of the C₆₀ surface by approximately 0.3 Å.

All five- and six-membered rings of the C_{60} sphere, except those containing C1 and C2, are planar, with average distances of the atoms from the least-squares planes of 0.005 (2) and 0.006 (2) Å, respectively. Deviations from the least-squares planes including C1 and C2 amount to 0.069 (2) and 0.052 (2) Å, respectively.

The arrangement of the molecules in the unit cell is shown in Fig. 2. If the fullerene molecules are regarded as forming a 'coordination polyhedron', a coordination number of 10 could be envisaged. The centre-to-centre distances are in the range 9.941(5)-13.318(6) Å.

Experimental

A solution of C_{60} and 2-(4-methoxyphenyl)-2*H*-azirine in toluene was irradiated in a quartz tube. The solution was filtered, concentrated in vacuo and then chromatographed (Averdung & Matthay, 1996). The dark-brown solid was dissolved in carbon disulfide. Slow evaporation yielded crystals of the title compound.

Crystal data

C ₆₉ H ₉ NO.CS ₂	Cu $K\alpha$ radiation
$M_r = 943.90$	$\lambda = 1.54178 \text{ Å}$
Monoclinic	Cell parameters from 61
$P2_1/n$	reflections
a = 21.094 (4) Å	$\theta = 15 - 36^{\circ}$
b = 10.022 (3) Å	$\mu = 1.829 \text{ mm}^{-1}$
c = 17.293 (4) Å	T = 293(1) K
$\beta = 90.18(2)^{\circ}$	Prism

$V = 3655.8(15) \text{ A}^3$
Z = 4
$D_x = 1.715 \text{ Mg m}^{-3}$
D_m not measured

Data collection

Stoe AED diffractometer	$R_{\rm int} = 0.0125$
$\omega/2\theta$ scans	$\theta_{\rm max} = 60.09^{\circ}$
Absorption correction:	$h = -23 \rightarrow 23$
none	$k = 0 \rightarrow 11$
5642 measured reflections	$l = 0 \rightarrow 19$
5436 independent reflections	3 standard reflections
3098 observed reflections	frequency: 90 min
$[I > 2\sigma(I)]$	intensity decay: 1.2%

Refinement

S1 S2 O1 N1 C1 C2 C3 C4 C5

Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.0451$	SHELXL93 (Sheldrick,
$wR(F^2) = 0.1211$	1993)
S = 0.881	Extinction coefficient:
5436 reflections	0.00010(6)
692 parameters	Atomic scattering factors
H atoms: see text	from International Tables
$w = 1/[\sigma^2(F_o^2) + (0.0779P)^2]$	for Crystallography (1992
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} = 0.007$	6.1.1.4)
$\Delta \rho_{\rm max} = 0.349 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta a = -0.251 e \Delta^{-3}$	

 $0.40 \times 0.24 \times 0.12$ mm

Black

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

x	y	Ξ	U_{eq}
0.93495 (6)	0.6725(1)	0.81099 (7)	0.0922(4)
1.02412 (6)	0.6575(1)	0.67178 (7)	0.0849 (4)
1.0336(1)	1.2026 (2)	0.7993(1)	0.0651(7)
0.9186(1)	1.1157 (3)	0.4646(2)	0.0573(7)
0.8546 (2)	0.9405 (3)	0.5196(2)	0.0454 (8)
0.8368 (2)	0.9522 (3)	0.4300(2)	0.0477 (8)
0.8430(1)	0.8269 (3)	0.3832(2)	0.0422 (7)
0.8728 (2)	0.7147 (3)	0.4101 (2)	0.0493 (8)
0.8906 (2)	0.7031 (3)	0.4905 (2)	0.0545 (9)

MATTHIAS RAMM et al.

C4	0.0700	0 7007	2) 0.5410.00	0.0422.75			G22	
0	0.8780(1)	0./986 (5) U.5418(2)	0.0433(7)	01-02	1.597 (4)	C32—C35	1.441 (5)
C7	0.8513 (2)	0.7656 (3) 0.6162 (2)	0.0484 (8)	C2-C3	1.501 (4)	C34—C46	1.382 (5)
C8	0.8420(2)	0.6343 (3) 0.6393 (2)	0.062(1)	C2-C17	1.506 (4)	C34—C35	1.435 (5)
C9	0.8577(2)	0.5295 (3) 0.5846 (2)	0.061(1)	C2-C62	1 592 (4)	C35-C36	1 368 (5)
CIO	0.8810(2)	0 5626 ((2) (2) (3) (5) (3) (5) (3) (2)	0.059(1)	C3_C4	1.360 (4)	C36 C38	1.000 (5)
CIU	0.0010(2)	0.3020 ((2)	0.057(1)	0,04	1.309 (4)	C30C38	1.434(3)
CII	0.8591 (2)	0.4934 (3) 0.4435(2)	0.000(1)	C3-C15	1.419 (4)	$C_3/-C_{42}$	1.366 (5)
C12	0.8531 (2)	0.5838 (.	3) 0.3819(2)	0.0598 (9)	C4—C5	1.443 (4)	C37—C38	1.459 (5)
C13	0.8046(2)	0.5732 (3) 0.3280(2)	0.0553 (9)	C4—C12	1.460 (4)	C38—C39	1.379 (5)
C14	0.7714(2)	0.6929 (3) 0.3016(2)	0.061(1)	C5-C6	1 332 (4)	C39_C46	1 300 (5)
CIS	0.7916(2)	0.8164 (3) 0 3304(2)	0.0547 (9)	C5-C10	1 478 (4)	C30 C40	1.577 (5)
CIG	0.7710(2)	0.0107 ((2)	0.0347(7)	CJC10	1.476 (4)	C39-C40	1.452 (5)
C16	0.7456(2)	0.9127 (.	3) 0.3501 (2)	0.0488 (8)	(6(/	1.445 (4)	C40—C41	1.422 (5)
C17	0.7680(2)	0.9850 ()	3) 0.4163 (2)	0.0469(8)	C7—C8	1.390 (4)	C40—C48	1.432 (5)
C18	0.6818 (2)	0.8851 (3) 0.3419(2)	0.057 (1)	C7—C56	1.469 (4)	C41—C42	1.428 (5)
C19	0.6381 (2)	0.9253 ()	3) 0.3994(2)	0.0583 (9)	C8-C50	1.425 (5)	C41 - C43	1 461 (5)
C20	0.6595 (2)	0 9938 (0.4634(2)	0.063(1)	62-69	1 452 (5)	C42 C45	1.101 (5)
C20	0.0373(2)	1,0220 ((2) (2) (2) (3)	0.0520.00	$C_0 - C_1 0$	1.452 (5)	C42—C43	1.429 (3)
C21	0.7273(2)	1.0239 (.	3) 0.4723 (2)	0.0339(9)	C9-C10	1.301 (5)	C43-C55	1.320(5)
C22	0.7073(2)	0.6636 (.	3) 0.2932(2)	0.0598 (9)	C9-C29	1.462 (5)	C43—C44	1.457 (5)
C23	0.6603 (2)	0.7562 (4	4) 0.3130(2)	0.0588 (9)	C10-C11	1.473 (5)	C44—C60	1.405 (5)
C24	0.6056(2)	0.7165 (.	3) 0.3528 (2)	0.0566 (9)	C11-C31	1.401 (5)	C44C45	1.481 (5)
C25	0.5894(2)	0.8220 (3) 0.4071(2)	0.062(1)	CU = C12	1 404 (5)	C46-C47	1 442 (5)
C26	0.6958 (2)	0.5230 ((2)	0.0567 (9)	C12 C13	1.386 (5)	C47 C49	1.415 (5)
C20	0.0738(2)	0.3230(.	0.5157(2)	0.0507(9)	C12-C13	1.360 (3)	C47_C49	1.415 (5)
C27	0.0430(2)	0.4807 (.	5) 0.3545 (2)	0.0567 (9)	C13-C33	1.420(5)	C4/C48	1.435 (5)
C28	0.5956 (2)	0.5857 (.	3) 0.3756(2)	0.0566 (9)	C13—C14	1.461 (5)	C48—C52	1.394 (5)
C29	0.8099(2)	0.4252 ()	3) 0.5943 (3)	0.075 (1)	C14—C22	1.389 (5)	C49—C50	1.470 (5)
C30	0.7900(2)	0.3580 ()	3) 0.5262 (3)	0.074(1)	C14—C15	1.401 (4)	C50-C51	1 356 (5)
C31	0 8146 (2)	0 3907 (3) 0.4521(2)	0.061 (1)	C15-C16	1.411.(4)	C51_C52	1 427 (5)
C32	0.7618(2)	0.3810 (0.3076(2)	0.066 (1)		1 201 (4)	C51_C52	1.427 (3)
C32	0.7018(2)	0.5810 (.	(2)	0.000(1)	010018	1.301 (4)	031-033	1.497 (4)
C33	0./586(2)	0.4/09(.	3) 0.3367(2)	0.068(1)	C16C17	1.434 (4)	C52—C55	1.466 (5)
C34	0.7226 (2)	0.3265 (.	3) 0.5189 (2)	0.073 (1)	C17—C21	1.354 (4)	C53—C56	1.349 (5)
C35	0.7056 (2)	0.3419 (3) 0.4390(2)	0.064 (1)	C18-C19	1.418 (5)	C53—C54	1,446 (5)
C36	0.6478(2)	0.3938 (3) 0.4191 (2)	0.058(1)	C18-C23	1 456 (5)	C54-C59	1 376 (5)
C37	0 5713 (2)	0 5535 ((0.4511(2))	0.0500 (0)	C19 C20	1 378 (5)	C54 C55	1.401 (5)
C39	0.5715(2)	0.3335 ((2) = 0.4779(2)	0.0577(3)	C19-C20	1.578 (5)	014-017	1.491 (3)
0.58	0.0038 (2)	0.4555 (.	3) 0.4778(2)	0.002(1)	C19-C25	1.404 (5)	(36(37	1.417 (4)
C39	0.6213 (2)	0.4184 (.	3) 0.5543 (2)	0.062(1)	C20—C60	1.433 (5)	C57—C58	1.359 (4)
C40	0.6052 (2)	0.5235 (4	4) 0.6086 (2)	0.065(1)	C20-C21	1.469 (5)	C58C59	1.431 (5)
C41	0.5745(2)	0.6404 (4	4) 0.5809(2)	0.065(1)	C21-C58	1.456 (5)	C59—C60	1,466 (5)
C42	0.5573(2)	0.6544 (0.5014(2)	0.0605 (9)	C22_C23	1 402 (5)	C61-C63	1.464(4)
C43	0.5979(2)	0.7691 ((1) = (1) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	0.0601 (9)	C22 C25	1 493 (4)	C63 C68	1 200 (4)
C4J	0.5757(2)	0.7071 (-7) 0.0120(2)	0.0001(9)	C22—C20	1.403 (4)	03-06	1.300 (4)
C44	0.5895 (2)	0.8028 (.	5) 0.5480 (2)	0.064 (1)	C23-C24	1.402 (5)	C63-C64	1.393 (4)
C45	0.5667 (2)	0.7904 (4	4) 0.4792(2)	0.066(1)	C24—C28	1.386 (5)	C64—C65	1.352 (4)
C46	0.6803 (2)	0.3662 (.	3) 0.5753 (2)	0.064 (1)	C24—C25	1.456 (5)	C65—C66	1.399 (4)
C47	0.7015(2)	0.4360 (3) 0.6436(2)	0.070(1)	C25-C45	1 375 (5)	C66-C67	1 387 (4)
C 49	0.6556 (2)	0 5356 (4) 0.6630(2)	0.061 (1)	C26 C27	1,220 (5)	C67 C69	1.307 (4)
C40	0.0000(2)	0.5550 (*	4) 0.0039(2)	0.001(1)	C20C27	1.339(3)	07-08	1.348 (4)
C49	0.7668(2)	0.4650 (.	3) 0.6521(2)	0.071(1)	C26C33	1.468 (5)		
C50	0.7863 (2)	0.5971 (.	3) 0.6804 (2)	0.058(1)				
C51	0.7408 (2)	0.6867 (4	4) 0.6995 (2)	0.069(1)	C66-01-C69	118.2 (2)	C28—C24—C25	117.8 (3)
C52	0.6747 (2)	0.6599 (4	4) 0.6915(2)	0.068(1)	C61—N1—C62	112.5 (3)	C23-C24-C25	107.8 (3)
C53	0.7521 (2)	0.8288 (0.6768(2)	0.060 (1)	C57_C1_C6	101.9 (2)	$C_{45} - C_{25} - C_{24}$	1201(3)
C54	0.7521(2)	0.0200 (.	(2) 0.6562 (2)	0.065 (1)		101.7(2)	C45_C25_C24	120.1 (3)
0.54	0.0908(2)	0.8651 (4	4) 0.0302 (2)	0.005(1)	(3)-(1-(6)	112.3 (2)	C45-C25-C19	119.0 (3)
C55	0.6410(2)	0.7781 (4	4) 0.6629(2)	0.068(1)	C6C1C61	114.3 (2)	C24—C25—C19	106.8 (3)
C56	0.8038 (2)	0.8666 (.	3) 0.6367 (2)	0.0487 (8)	C57—C1—C2	116.1 (3)	C27—C26—C33	121.5 (3)
C57	0.8008(2)	0.9614 (3) 0.5760(2)	0.0433 (7)	C6C1C2	112.4 (2)	C27-C26-C22	121.8 (3)
C58	0.7435(2)	1.0106 ()	3) 0.5538 (2)	0.0508 (8)	C61-C1-C2	100.5 (2)	$C_{33} - C_{26} - C_{22}$	1047(3)
C59	0.6879 (2)	0 9706 (3) 0.5950(2)	0.0553 (9)	C3_C2_C17	100 5 (2)	C_{26} C_{27} C_{36}	120.6 (3)
C60	0.6350 (2)	0.0620 (3) 0.5388 (2)	0.068(1)		112 6 (2)	C26_C27_C30	120.0 (3)
C61	0.0000 (2)	1 0522 (2) 0.5566 (2)	0.000(1)	$C_{17} = C_{2} = C_{12}$	113.0(3)	$C_{20} = C_{27} = C_{28}$	120.0 (3)
COL	0.9070(2)	1.0525 (.	5) 0.3264 (2)	0.0400(8)	C1/-C2-C62	110.7(2)	$C_{36} - C_{27} - C_{28}$	106.3 (3)
C62	0.8810(2)	1.0705 (.	3) 0.4008 (2)	0.0522 (9)	C3—C2—C1	116.2 (2)	C24—C28—C37	121.7 (3)
C63	0.9383 (2)	1.0913 (.	3) 0.5986 (2)	0.0456 (8)	C17—C2—C1	113.1 (3)	C24—C28—C27	117.6 (3)
C64	0.9543 (2)	1.0024 (3) 0.6573 (2)	0.058 (1)	C62-C2-C1	103.1 (2)	C37—C28—C27	108.9 (3)
C65	0.9850(2)	1.0412 ((0.7223(2))	0.0582 (9)	C4-C3-C15	120 5 (3)	$C_{49} - C_{29} - C_{30}$	122.2 (4)
C66	1 0021 (2)	1 1740 (3) 0.7326(2)	0.0478 (8)	C1 C2 C1	123.0 (2)	C40 C20 C0	100.0 (4)
C00	1.0021(2)	1.1742(.	(2)	0.0470(0)	$C_4 = C_3 = C_2$	125.0(3)	C49-C29-C9	109.0 (4)
C6/	0.9852(2)	1.2030 (.	3) 0.6750(2)	0.0560 (9)	C15 - C3 - C2	110.0(3)	C30—C29—C9	116.5 (4)
C68	0.9530(2)	1.2242 (.	3) 0.6125 (2)	0.0542 (9)	C3—C4—C5	120.8 (3)	C29—C30—C31	122.1 (4)
C69	1.0545 (2)	1.3359 ()	3) 0.8119 (2)	0.0596 (9)	C3-C4-C12	119.6 (3)	C29-C30-C34	117.4 (4)
C70	0.9793(2)	0.6634 (3) 0.7404 (2)	0.072(1)	$C_{5}-C_{4}-C_{12}$	108.8 (3)	C31-C30-C34	109 2 (4)
-	/			- • • •	C6-C5-C4	122 1 (3)		120 7 (2)
						110 2 (2)		110 4 (2)
				0		118.3 (3)	CII - CSI - CS2	119.4 (3)
Tal	ble 2. Sele	cted geom	etric parameters	s (Å. °)	C4-C5-C10	107.8 (3)	C30—C31—C32	106.7 (3)
14			en le parameters	· () /	C5-C6C7	120.5 (3)	C33—C32—C35	121.0 (4)
S1—C70		1.543 (4)	C27—C36	1.457 (4)	C5-C6-C1	123.9 (3)	C33-C32-C31	118.8 (3)
\$2—C70		1.521 (4)	C27—C28	1,465 (5)	C7-C6-C1	107.8 (3)	C35-C32-C31	109.0 (3)
01_066		1 358 (4)	C28_C37	1 440 (5)	C8_C7_C6	121 0 (3)	C32_C32_C12	121 1 (4)
		1.330 (4)	C20 C40	1 4 1 1 (2)	C_{0}	141.7 (3)	$C_{22} - C_{23} - C_{13}$	117 2 (4)
		1.424 (3)	C29-C49	1.411 (0)		119.1 (3)	$C_{2} - C_{2} - C_{2}$	117.3 (4)
NI-C61		1.20/(4)	C29-C30	1.418 (5)	CoC/C56	109.0 (3)	C13-C33-C26	109.5 (3)
N1—C62		1.431 (4)	C30-C31	1.422 (5)	C7—C8—C50	120.6 (3)	C46—C34—C35	119.3 (4)
C1-C57		1.514 (4)	C30—C34	1.463 (5)	С7—С8—С9	117.8 (3)	C46-C34-C30	120.4 (4)
C1-C6		1.553 (4)	C31-C32	1 460 (5)	C50-C8-C9	109.1 (3)	C35-C34-C30	107 5 (4)
		1 577 (4)	C32 C32	1 200 /51		105(3)	C36 C35 C34	1001(4)
~i-~0i		1.377(4)	C32-C33	1.200(3)	LIV-L7-L0	117.3(3)	こうひーし ううーし うち	120,1(4)

$C_{69}\Pi_{9}\Pi_{0}UUUU_{32}$	C_{69}	Hg	NC	$0.CS_2$
---------------------------------	----------	----	----	----------

C10 C0 C20	121.0 (4)	C16 C15 C11	120.4(4)
$C_{10} - C_{9} - C_{29}$	121.9 (4)	$C_{30} = C_{33} = C_{32}$	1077(3)
C8-C9-C29	106.4 (4)	$C_{34} - C_{33} - C_{32}$	107.7 (3)
C9-C10-C11	120.9 (3)	0.13-0.10-0.18	120.4 (4)
C9-C10-C5	121.8 (3)	C35-C36-C27	119.1 (4)
C11—C10—C5	105.4 (3)	C38—C36—C27	109.1 (3)
C31-C11-C12	119.7 (4)	C42C37C28	119.3 (3)
C31—C11—C10	117.8 (4)	C42—C37—C38	120.7 (3)
C12 - C11 - C10	110.5 (3)	C28—C37—C38	107.6 (3)
CI3_CI2_CI1	121.7 (3)	C39-C38-C36	118.4 (3)
C_{13} C_{12} C_{12} C_{4}	120.2 (3)	$C_{39} - C_{38} - C_{37}$	121.2(4)
CII = CI2 = C4	107.5 (3)	$C_{36} - C_{38} - C_{37}$	108.0 (3)
$C_{11} = C_{12} = C_{4}$	110.2 (3)	C38-C39-C46	1217(4)
C12 - C13 - C33	119.2 (3)	$C_{30} = C_{30} = C_{40}$	118.6 (1)
$C_{12} = C_{13} = C_{14}$	120.0 (5)	$C_{36} - C_{39} - C_{40}$	108.2 (2)
C33-C13-C14	107.4 (3)	C+0-C39-C40	106.2 (3)
C22-C14-C15	121.2 (4)	C41 - C40 - C48	119.4 (5)
C22—C14—C13	108.9 (3)	C41-C40-C39	119.1 (3)
C15-C14-C13	117.9 (3)	C48C40C39	108.7 (3)
C14C15C16	118.8 (3)	C40—C41—C42	121.3 (3)
C14-C15-C3	121.7 (3)	C40—C41—C43	118.3 (4)
C16-C15-C3	108.6 (3)	C42-C41-C43	110.3 (3)
C18-C16-C15	120.5 (3)	C37-C42-C41	119.1 (3)
C18-C16-C17	120.2(3)	C37-C42-C45	120.3(4)
C15_C16_C17	108.2(3)	C41 - C42 - C45	108.5 (3)
C13_C17_C16	120.6 (3)	C55_C43_C44	120 1 (3)
$C_{21} = C_{17} = C_{10}$	120.0 (3)	C55 C43 C41	120.1(3) 121.2(4)
$C_{21} = C_{17} = C_{2}$	124.3 (3)	C_{33} C_{43} C_{41}	105.4(3)
	109.5 (3)	$C_{44} - C_{4} - C_{4}$	100.4 (0)
C16-C18-C19	120.5 (3)	$C_{00} - C_{44} - C_{45}$	120.5 (4)
C16-C18-C23	121.0 (3)	C60-C44-C45	118.3 (4)
C19-C18-C23	106.8 (3)	C43-C44-C45	108.7(3)
C20—C19—C18	119.5 (3)	C25-C45-C42	120.8 (4)
C20-C19-C25	120.5 (4)	C25—C45—C44	120.4 (3)
C18-C19-C25	108.7 (3)	C42-C45-C44	107.2 (3)
C19C20C60	120.4 (3)	C34-C46-C39	119.9 (4)
C19-C20-C21	120.2 (4)	C34—C46—C47	121.3 (4)
C60-C20-C21	106.9 (3)	C39—C46—C47	107.7 (4)
C_{17} C_{21} C_{58}	121.2 (3)	C49-C47-C48	119.3 (3)
C_{17} C_{21} C_{20}	1191(3)	C49 - C47 - C46	118.9 (4)
$C_{17} = C_{21} = C_{20}$	107.9 (3)	C48-C47-C46	109 3 (3)
$C_{30} - C_{21} - C_{20}$	107.9(3)	$C_{40} = C_{47} = C_{40}$	121.2 (1)
C14 - C22 - C23	121.0(3)	$C_{32} - C_{40} - C_{40}$	120.7(1)
$C_{14} - C_{22} - C_{20}$	109.5 (3)	$C_{32} - C_{40} - C_{47}$	$1/2 \cdot 1 \cdot (-7)$
C23-C22-C26	110.0(3)	C40-C48-C47	100.1 (5)
C22C23C24	121.0(3)	C29C49C47	119.8 (4)
C22—C23—C18	116.8 (3)	C29—C49—C50	108.1 (4)
C24—C23—C18	109.9 (3)	C47-C49-C50	119.4 (4)
C28—C24—C23	122.3 (3)	C51-C50-C8	122.2 (3)
C51—C50—C49	118.7 (4)	C57—C58—C21	120.8 (3)
C8-C50-C49	107.4 (4)	C59—C58—C21	108.5 (3)
C50-C51-C52	123.0 (3)	C54—C59—C58	121.8 (3)
C50-C51-C53	116.9 (3)	C54—C59—C60	120.3 (3)
C52-C51-C53	108.0 (4)	C58—C59—C60	107.4 (3)
C48-C52-C51	118.9 (4)	C44-C60-C20	120.7 (4)
C48-C52-C55	117.9 (3)	C44-C60-C59	118.8 (4)
C51_C52_C55	1107(3)	C20-C60-C59	109.2 (3)
C56-C53-C54	119.4(3)	N1-C61-C63	119.8 (3)
C56 C53 C51	177.4(3)	N1 -C61-C1	115.5 (3)
C50-C53-C51	106.2 (2)		1215(3)
C34-C33-C31	100.5 (3)		109.2 (2)
(59-(54-(53	117.8 (3)	N1 = C02 = C2	100.5 (3)
C59—C54—C55	118.7 (4)	C68-C03-C04	115.7 (5)
C53—C54—C55	110.2 (3)	008-003-061	120.3 (3)
C43-C55-C52	121.9 (4)	C64—C63—C61	124.0 (3)
C43—C55—C54	121.8 (4)	C65—C64—C63	122.5 (3)
C52-C55-C54	104.8 (3)	C64—C65—C66	120.3 (3)
C53—C56—C57	122.4 (3)	O1-C66-C67	126.4 (3)
C53-C56-C7	118.9 (3)	O1-C66-C65	115.4 (3)
C57-C56-C7	108.2 (3)	C67-C66-C65	118.1 (3)
C58-C57-C56	119.3 (3)	C68—C67—C66	120.1 (3)
C58_C57_C1	122 4 (3)	C67-C68-C63	123.2 (3)
C56_C57_C1	1107(3)	S2S1	178 4 (3)
C57 C59 C50	110.7 (3)	01 070 01	
LJ/-LJO-LJY	117.2 (3)		

and that the structure has, in reality, the centrosymmetric space group $P2_1/n$. All H atoms were refined except H691, H692 and H693 which were included as riding atoms. The bond length involving H622 (C62—H622) was restrained.

Data collection: Stoe diffractometer software. Cell refinement: Stoe diffractometer software. Data reduction: Stoe diffractometer software. Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *OR-TEPII* (Johnson, 1971), *SCHAKAL*92 (Keller, 1992). Software used to prepare material for publication: *SHELXL*93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1208). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square, Chester CH1 2HU, England.

.) ()	References
) -)	Anderson, H. L., Boudon, C., Diederich, F., Gisselbrecht JP., Gross, M. & Seiler, P. (1994). Angew. Chem. 106, 1691–1694.
)	Averdung, J. & Mattay, J. (1996). Tetrahedron, 92, 5407-5420.
)	Balch, A. L., Catalano, V. J., Lee, J. W. & Olmstead, M. M. (1992).
5)	J. Am. Chem. Soc. 114, 5455–5457.
5) 5	Bensch, W., Werner, H., Bartl, H. & Schlögel, R. (1994). J. Chem.
1) L)	Soc. Faraday Trans. 90, 2791–2797.
4)	Boeyens, J. C. A., Ramm, M., Zobel, D. & Luger, P. (1996). S. Afr.
5)	J. Chem. In the press.
I)	Bürgi, HB., Restori, R. & Schwarzenbach, D. (1993). Acta Cryst.
3)	B 49 , 832–838.
4)	Chow, P. C., Jiang, X., Reiter, G., Wochner, P., Moss, S. C., Axe, J.
1)	D., Hanson, J. C., McMullan, R. K., Meng, R. L. & Chu, C. W.
5) 1 \	(1992), Phys. Rev. Lett. 69, 2943-2946.
1)	Fedurco, M., Olmstead, M. M. & Fawcett, W. R. (1995). Inorg. Chem.
4)	34, 390–392.
3)	Hedberg, K., Hedberg, L., Bethune, D. S., Brown, C. A., Dorn, H. C.,
3)	Johnson, R. D. & de Vries, M. (1991). Science, 254, 410-412.
3)	Hirsch, A. (1995). Synthesis, pp. 895-912.
5) 7)	Imgartinger, H., Köhler, CM., Huber-Patz, U. & Krätschmer, W.
3) 3)	(1994). Chem. Ber. 127, 581–584.
4)	Johnson, C. K. (1971). ORTEP11. Report ORNL-3794, revised. Oak
4)	Ridge National Laboratory, Tennessee, USA.
3)	Keller, E. (1992). SCHAKAL92. A Computer Program for the
3)	Graphic Representation of Molecular and Crystallographic Models.
3)	University of Freiburg, Germany.
3) 7	Osterodt, J., Nieger, M. & Vögtle, F. (1994). J. Chem. Soc. Chem.
2) 2)	<i>Commun.</i> pp. 1607–1608.
.,, 3)	Paulus, E. F. & Bingel, C. (1995). Acta Cryst. C51, 143-146.
3)	Roth, G. & Adelmann, P. (1993). Appl. Phys. A56, 169-174.
3)	Rubin, Y., Khan, S., Freedberg, D. I. & Yeretzian, Ch. (1993). J. Am.
3)	Chem. Soc. 115, 344–345.
3)	Sheldrick, G. M. (1990). Acta Cryst. A46, C-34.
3)	Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of
5) 2)	Crystal Structures. University of Göttingen, Germany.
.''	

Although the systematic absences and the intensity statistics favoured the centrosymmetric space group, the phase problem could be solved only in the non-centrosymmetric space group $P2_1$ with two molecules in the asymmetric unit. In the course of the refinement, it was found that one molecule of the fullerene crystallizes with one molecule of carbon disulfide